Step
![1](https://img.qammunity.org/2019/formulas/mathematics/high-school/dxgbc3dlxncrowciv3ttunqsrhh5g4ssp8.png)
Find the area of the rectangular yard
the area of the rectangular yard is equal to
![A=L*W](https://img.qammunity.org/2019/formulas/mathematics/high-school/omvaaa1lujkopjhk05pocou830favmfrkv.png)
where
L is the length side of the rectangle
W is width side of the rectangle
in this problem we have
![L=7x\ units\\W=6x\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/tsh2dmzwv63sjeu59cz8zgxezw0dui4xsw.png)
![A=L*W](https://img.qammunity.org/2019/formulas/mathematics/high-school/omvaaa1lujkopjhk05pocou830favmfrkv.png)
![A=7x*6x](https://img.qammunity.org/2019/formulas/mathematics/high-school/84k58xea7leckviq7exdbigw18kom6q1w7.png)
![A=42x^(2)\ units^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/88y7ne56prlj5uskhup5th9vs4q0s79pz8.png)
Step
![2](https://img.qammunity.org/2019/formulas/mathematics/college/1tpoxbp8mbu4h20xmb8ybcxwgwmu840mr5.png)
Find the area of a circular fountain
we know that
the area of a circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2019/formulas/mathematics/college/p8dbe8cftfutux3sivoiygrcpuxadbw5x8.png)
where
r is the radius of the circle
in this problem we have
![r=2x\ units](https://img.qammunity.org/2019/formulas/mathematics/high-school/u0px0auu7xu0audd55pku07v2n85pgwfwv.png)
substitute
![A=\pi (2x)^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/28h05a6sg1v1nr1d92vwsmrr77ilg7ulu5.png)
![A=4\pi x^(2)\ units^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pvyurhhiv0o9oedo1xqy1als50yqolto4w.png)
Step
![3](https://img.qammunity.org/2019/formulas/mathematics/high-school/hbbf7ptcvkzqpizk1mcsdbejc8kcre7ia9.png)
Find area of the remaining yard
Subtract the area of a circular fountain from the area of the rectangular yard
![42x^(2)\ units^(2)-4 \pi x^(2)\ units^(2)=2x^(2)[21-2\pi]](https://img.qammunity.org/2019/formulas/mathematics/high-school/d931k5djdx80h0vuxm8odtwn0q6hs305mb.png)
therefore
the answer is the option B
![2x^(2)[21-2\pi]\ units^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/h3f99amd6d0u40kzuxlhvkhsu9l8id1a32.png)