231k views
1 vote
The proof that HG ≅ EG is shown. Given: G is the midpoint of KF KH ∥ EF Prove: HG ≅ EG What is the missing reason in the proof? Statement Reason 1. ∠EGF ≅ ∠HGK 1. vert. ∠s are ≅ 2. KH ∥ EF 2. given 3. ∠F ≅ ∠K 3. alt. int. ∠s are ≅ 4. G is the midpoint of KF 4. given 5. FG ≅ KG 5. def. of midpt. 6. △FEG ≅ △KHG 6. ? 7. HG ≅ EG 7. CPCTC SAS ASA AAS HL

2 Answers

5 votes

Answer:

The answer is ASA

Explanation:

Edge 2022

User Mitchelangelo
by
8.5k points
3 votes
In the proof we see that ∠EGF is congruent to ∠HGK because they are vertical angles.  We also see that KG is congruent to FG because G is the midpoint.  Additionally we have that ∠F is congruent to ∠K because they are alternate interior angles.  We have two angles and the side between them, or ASA.
User Luchspeter
by
9.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories