31.3k views
4 votes
24500 dollars and depreciates 14.75% per year what will the value be to the nearest cent after 14 years

User Trissa
by
7.4k points

2 Answers

7 votes

Answer: y ≈ 2623.54

Explanation:

y=ab^x

a=starting value=0.1475

Exponential decay

b= 1 - r = 1 - 0.1475 = 0.8525

Write exponential function

y= 24500(0.8525)^x

Plug in time for x (14)

And you'll get y ≈ 2623.54

User Ignacio Arces
by
7.9k points
1 vote
Depreciation is the decrease in value of a given asset within a given period of time.
Using the formula, A=P(1-r/100)^n, where A is the new value after depreciation, P is the original value, r is the depreciation rate and n is the time taken.
Therefore,
A = 24500(0.8525)^14
= 2623.54 dollars
≈ 2623.50 dollars
Thus the value after 14 years will be 2623.50 dollars
User Piotr Kula
by
9.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories