183k views
1 vote
In a material for which o=5.0 S/m and e, =1 the electric field intensity is E- 250 sin 10" (V/m). Find the conduction and displacement current densities, and the frequency at they have equal magnitudes.

1 Answer

0 votes

Answer:

Step-by-step explanation:

Given that:

The conductivity of the material
\sigma = 5.0 s/m


The \ relative \ permittivity \ of \ the \ material
{\varepsilon_r} = 1 ; &

The electric field intensity of the material E = 250 sin(10¹⁰ t) V/m

(a) The conduction current density
( J_c) = \sigma E


= 5.0 * 250 \ sin ( 10^(10) \ t )


\mathbf{ = 1250 \ sin (10 ^(10) t ) \ A/m^2 }

(b) Displacement current density
(J_d) = \varepsilon _d * (\delta E)/(\delta t)

Recall that:


\varepsilon _o = 8.854 * 10^(-12)


(J_d) = 8.854 * 10^(-12) * (d)/(dt) * (250 \ sin \ (10^(10) \ t))


(J_d) = 8.854 * 10^(-12) * 250 * 10^(10) * \ cos \ (10^(10) \ t)


(J_d) = 22.135 \ cos \ 10^(10) \ t \ A/m^2

(c) The frequency at which
J_c \ and \ J_d will have the same magnitude is:


f = (\sigma)/(2 \pi \varepsilon_o \varepsilon_r)

By substitution


f = 18 * 10^9 * (\sigma )/(\varepsilon_r)


f = 18* 10^9 * (5)/(1 )

f = 90 GHz

User Looper
by
4.6k points