Answer:
Step-by-step explanation:
Given that:
The conductivity of the material
= 5.0 s/m
; &
The electric field intensity of the material E = 250 sin(10¹⁰ t) V/m
(a) The conduction current density
![( J_c) = \sigma E](https://img.qammunity.org/2022/formulas/physics/college/l3r6clqnrt1hx7g7zfwmo9jz6dscgwj51g.png)
![= 5.0 * 250 \ sin ( 10^(10) \ t )](https://img.qammunity.org/2022/formulas/physics/college/k9vm23t519bzci8f10ehxhu359319sgxyd.png)
![\mathbf{ = 1250 \ sin (10 ^(10) t ) \ A/m^2 }](https://img.qammunity.org/2022/formulas/physics/college/d0fqponzmt45a1j060atvxumtsb5eg0bqy.png)
(b) Displacement current density
![(J_d) = \varepsilon _d * (\delta E)/(\delta t)](https://img.qammunity.org/2022/formulas/physics/college/r34luavznizsvd42gtyelvqbbscqcbspax.png)
Recall that:
![\varepsilon _o = 8.854 * 10^(-12)](https://img.qammunity.org/2022/formulas/physics/college/87lqlqpy63vw9sgof64c0ij726n09xec4z.png)
∴
![(J_d) = 8.854 * 10^(-12) * (d)/(dt) * (250 \ sin \ (10^(10) \ t))](https://img.qammunity.org/2022/formulas/physics/college/t2naokvvzsfunxb43k7d4obv3mogut8qiy.png)
![(J_d) = 8.854 * 10^(-12) * 250 * 10^(10) * \ cos \ (10^(10) \ t)](https://img.qammunity.org/2022/formulas/physics/college/9tsb9u4hj4mg0004prtb6n2cmnl3taoe5g.png)
![(J_d) = 22.135 \ cos \ 10^(10) \ t \ A/m^2](https://img.qammunity.org/2022/formulas/physics/college/22mho37t9dixfkgjb5p2h5f0w9quc90980.png)
(c) The frequency at which
will have the same magnitude is:
![f = (\sigma)/(2 \pi \varepsilon_o \varepsilon_r)](https://img.qammunity.org/2022/formulas/physics/college/h3e76xcxsbvfz3478ym5e98e7chfy1vr8h.png)
By substitution
![f = 18 * 10^9 * (\sigma )/(\varepsilon_r)](https://img.qammunity.org/2022/formulas/physics/college/rniintj0o189wgy587gxmohukpvu430scb.png)
![f = 18* 10^9 * (5)/(1 )](https://img.qammunity.org/2022/formulas/physics/college/ljucfizwcncf5h40n68gh01zbzympz0rmu.png)
f = 90 GHz