147k views
3 votes
Find the value of 373 using the identity (x − y)3 = x3 − 3x2y + 3xy2 − y3. Show all work.

Hint: 373 = (40 − 3)3; therefore, x = 40 and y = 3.

1 Answer

6 votes

Answer:


37^3 = 50653

Explanation:

Given


(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3

Required

Find
37^3

Express 37 as 40 - 3

So, we have:


37^3 = (40 - 3)^3

Compare to
(x -y)^3


x = 40\ and\ y = 3

Substitute 40 for x and 3 for y in
(x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3


(40 - 3)^3 = 40^3 - 3*40^2*3 + 3*40*3^2 - 3^3

Evaluate all exponents


(40 - 3)^3 = 64000 - 3*1600*3 + 3*40*9 - 27

Evaluate all products


(40 - 3)^3 = 64000 - 14400 + 1080 - 27


(40 - 3)^3 = 50653

Hence:


37^3 = 50653

User Ben Campbell
by
3.4k points