Answer:
The width and the length of rectangle are 4 cm and 13 cm respectively .
Explanation:
Let the width be x
We are given that its length is 5 more than twice the width
So, length= 2x+5
Perimeter of rectangle =
![2(L+W)](https://img.qammunity.org/2019/formulas/mathematics/college/6dopxmt2doelimoidb1lzs4o921mqup5ow.png)
=
We are given that perimeter is 34 cm
So,
x=4
So, width = 4 cm
Length = 2x+5=2(4)+5=13 cm
Area of rectangle =
![Length * width = x(2x+5)](https://img.qammunity.org/2019/formulas/mathematics/college/7sxtu0969n8imk7ywt9whc3vaao0mw980u.png)
We are given that area is 52sq.cm
So,
![x(2x+5) =52](https://img.qammunity.org/2019/formulas/mathematics/college/83cq2qs7turt1qdrrjynp1nd7vpwwfrpde.png)
![2x^2+5x=52](https://img.qammunity.org/2019/formulas/mathematics/college/w7qo3l4lfiw9r5bbhgxypjjnr0io2zj3yq.png)
![(x-4)(2x+13)=0](https://img.qammunity.org/2019/formulas/mathematics/college/y6b24quxpm31je4pm857v0fvw2dqckklfg.png)
![x=4,(-13)/(2)](https://img.qammunity.org/2019/formulas/mathematics/college/7kj4g4sl9vd8ehsa1j57fdfcveitgaswq9.png)
Since width cannot be negative
So,width = 4 cm
Length = 2x+5=2(4)+5=13 cm
Hence The width and the length of rectangle are 4 cm and 13 cm respectively .