182k views
5 votes
What is the sum? 3y/y^2+7y+10+2/y+2

User Mallow
by
8.0k points

2 Answers

5 votes

Final answer:

To find the sum of the expressions, you need to find a common denominator and then combine the two expressions. The final result will be (5y^2 + 20y + 20)/(y^2+7y+10)(y+2).

Step-by-step explanation:

To find the sum of the given expressions, 3y/y^2+7y+10 + 2/y+2, we need to first find a common denominator.

The common denominator for the two expressions is (y^2+7y+10)(y+2).

Next, we can add the two expressions together, keeping the common denominator:

(3y(y+2) + 2(y^2+7y+10))/(y^2+7y+10)(y+2).

We can further simplify the numerator by distributing and combining like terms:

((3y^2 + 6y) + (2y^2 + 14y + 20))/(y^2+7y+10)(y+2).

Combining like terms again, we get:

(5y^2 + 20y + 20)/(y^2+7y+10)(y+2).

User Jens Borgland
by
7.7k points
4 votes

(3y)/(y^2+7y+10) + (2)/(y+2) \\ \\ = (3y)/((y+2)(y+5)) + (2)/(y+2) \\ \\ = (3y)/((y+2)(y+5)) + (2(y+5))/((y+2)(y+5)) \\ \\ = (3y+2(y+5))/((y+2)(y+5)) = (3y+2y+10)/((y+2)(y+5)) \\ \\ = (5y+10)/((y+2)(y+5)) = (5(y+2))/((y+2)(y+5)) \\ \\ = (5)/(y+5)
User Oarevalo
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories