Answer: (D) P=24√6, A=96√3
Explanation:
Consider ΔABC where D is the midpoint of BC. Since ABC is an equilateral triangle, then segment AD is a perpendicular bisector with length of 12√2. This creates ΔADC which is a 30°-60°-90° triangle.
Now you can use the rules for this special triangle to find the length of the hypotenuse.
30° ⇄ side length "a" base - DC on ΔADC
60° ⇄ side length "a√3" height - AD on ΔADC
90° ⇄ side length "2a" hypotenuse - AC on ΔADC
Step 1: solve for "a"




Step 2: solve for "2a"


Step 3: find the perimeter
The side length is equivalent for all 3 sides so
P = 3(AC)


Step 4: find the area

