Every two triangles are similar. Therefore the sides of triangles are in proportion.
We have the equations:
1.
cross multiply
divide both sides by 5
![3+x=(3)(4)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/l0t6kvgu97oxehr0c6rs5aw9ymjw833vqf.png)
subtract 3 from both sides
![\boxed{x=9}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hjuebfjgtkvtcjejl1kx7drcvxkspdqboa.png)
--------------------------------------
2.
cross multiply
![3y=(4)(9)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/tjp3rjtufxi18gb8gujoz30mvq0u2cubh3.png)
divide both sides by 3
![\boxed{y=12}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/z7byq1mo7y64xx7bbgdvgj0n51nprdzi8m.png)
------------------------------------------
3.
![(3)/(5)=(3+9+u)/(60)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1963x471xw2s5xl09ia95cbcbirr72igc2.png)
cross multiply
divide both sides by 5
![12+u=(3)(12)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/p4a5gk86alfivt4k8dffhsiq74y74mkiw4.png)
subtract 12 from both sides
![\boxed{u=24}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/34gcsp72cjag4qtonh4v6x39ad4cghqxz8.png)
----------------------------------------------
4.
cross multiply
![3v=(4)(24)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/au18k0n9m4jlwz0vv0cxxf6o0qusgy835u.png)
divide both sides by 3
![\boxed{v=32}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/w9hedde0qp55govrhdlsy5rj2c2atlifz6.png)