34.1k views
15 votes
Find the root of

\sqrt{2x { }^(2) } + x + √(2) = 0


1 Answer

5 votes

Answer:

The root of x = -2 + √2

Explanation:

Step(i):-

Given
\sqrt{2x^(2) } + x +√(2) = 0


√(2) } ( x^2 ) ^{(1)/(2) } + x +√(2) = 0


√(2)x + x +√(2) = 0


(√(2) + 1) x = - √(2)


x = (-√(2) )/((√(2) + 1))

Step(ii):-

Rationalizing


x = (-√(2) )/((√(2) + 1)) X ((√(2) - 1))/((√(2) - 1))

Apply ( a-b ) ( a+b) = a²-b²


x = (-√(2)(√(2) -1) )/((√(2))^(2) - 1^(2) )) = (-(2-√(2) )/(2-1)

The root of x = -2 + √2

User Moklesur Rahman
by
3.5k points