34.2k views
15 votes
Find the root of

\sqrt{2x { }^(2) } + x + √(2) = 0


1 Answer

5 votes

Answer:

The root of x = -2 + √2

Explanation:

Step(i):-

Given
\sqrt{2x^(2) } + x +√(2) = 0


√(2) } ( x^2 ) ^{(1)/(2) } + x +√(2) = 0


√(2)x + x +√(2) = 0


(√(2) + 1) x = - √(2)


x = (-√(2) )/((√(2) + 1))

Step(ii):-

Rationalizing


x = (-√(2) )/((√(2) + 1)) X ((√(2) - 1))/((√(2) - 1))

Apply ( a-b ) ( a+b) = a²-b²


x = (-√(2)(√(2) -1) )/((√(2))^(2) - 1^(2) )) = (-(2-√(2) )/(2-1)

The root of x = -2 + √2

User Moklesur Rahman
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories