Answer:
option B is correct.
![2\sin^2r - 1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6rrc15jyxwdi91du14x2pnedhj4ur0su9l.png)
Explanation:
Given the expression:
......[1]
Using trigonometric identities:
![\sin^2r+ \cos^2r = 1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hv1b5yosok1z92jihcxkkx8k5wuld00et1.png)
We can rearrange this as;
......[2]
Substitute equation [2] into [1] we get;
![1-2(1-\sin^2r)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3vpp30uur83fxjz1utx2oh55syiqdwlv1n.png)
Using distributive property:
![a\cdot (b+c) = a \cdot b + a\cdot c](https://img.qammunity.org/2019/formulas/mathematics/middle-school/68u1y12uwi2vkmxo86kbj6e9poiwccgmac.png)
![1- 2 +2sin^2r](https://img.qammunity.org/2019/formulas/mathematics/middle-school/vhxwp9nckud2xgn4xtappl34wlisz3xqsj.png)
or
![-1+2\sin^2r](https://img.qammunity.org/2019/formulas/mathematics/middle-school/i3y7h10xfymtmrhigyuuz28y4a3eh2wwls.png)
therefore, the given expression in terms of sine terms is;
![2\sin^2r-1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gzl15108rfyyqs9sjcs199s194oqd372fm.png)