Answer:
![f(x)=2x^2-1](https://img.qammunity.org/2019/formulas/mathematics/college/jdmikvs7c7mf6okrvaf4jn5fhm09zuha33.png)
Explanation:
To determine a quadratic function fully, three known points are needed. Each point can be used to determine one parameter of the function. A general quadratic is as follows:
![f(x)=ax^2+bx+c](https://img.qammunity.org/2019/formulas/mathematics/high-school/v1rne7v6ixq9nfn6kzp942j78qleu9y6is.png)
where a,b, and c are to be determined.
Use the individual points from the table to set up an equation system with the unknowns a,b, and c, then solve:
![1=a(-1)^2+b(-1)+c\implies 1=a-b+c\\-1=a0+b0+c\implies -1=c\\7=a2^2+b2+c\implies 7=4a+2b+c\\\\\mbox{solve:}\\\\1=a-b-1\implies a=2+b\\7=4(2+b)+2b-1\implies b=0\implies a=2\\\\\mbox{solution:}\\a=2, b=0, c=-1\\f(x)=2x^2-1](https://img.qammunity.org/2019/formulas/mathematics/college/cv1k0hbzvc78uo98sem2bwbn6lv2bilmoe.png)