82.9k views
2 votes
What are the roots of `2x + 6 = -(5)/(x)`?

A. `(3stackrel(+)(-) i)/(2)`
B. `(-3stackrel(+)(-) i)/(2)`
C. `(-3stackrel(+)(-) 2i)/(4)`
D. `(3stackrel(+)(-) isqrt(2))/(4)`

User Pmishev
by
7.9k points

1 Answer

3 votes

Answer:

B.
x = (-3 \pm i)/(2)

Explanation:

2x + 6 = -5/x Multiply both sides by x

2x² + 6x = -5 Add 5 to each side

2x² + 6x + 5 = 0

==============

Apply the quadratic formula


x = (-b\pm√(b^2-4ac))/(2a)

a = 2; b = 6; y = 5


x = (-6\pm√(6^2-4* 2 * 5))/(2* 2)


x = (-6\pm√(36-40))/(4)


x = (-6\pm√(-4))/(4)


x = (-6\pm2i)/(4)


x = -(3)/(2)\pm(i)/(2)


x = (-3 \pm i)/(2)

The graph of the parabola never reaches the x-axis, so there are no real roots.


What are the roots of `2x + 6 = -(5)/(x)`? A. `(3stackrel(+)(-) i)/(2)` B. `(-3stackrel-example-1
User Fatih Tekin
by
7.7k points