Answer:
Length of arc BC is 14 centimeter.
Explanation:
Point A, B and C lie on a circle with center Q.
The area of sector AQB is twice the area of sector BQC.
![\text{Area of sector AQB}=2\text{Area of sector BQC}](https://img.qammunity.org/2019/formulas/mathematics/high-school/o7erqnv0ah9sxm027gxmf18417jd4b7vlk.png)
![\text{Formula for area of sector:} =(\theta)/(360^(\circ))* \pi r^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/tl3nyhg19lyd1nb06er01rvl4nbn8jca14.png)
Let sector AQB subtended angle
at centre.
Let sector BQC subtended angle
at centre.
![\theta_1=2\theta_2](https://img.qammunity.org/2019/formulas/mathematics/high-school/80jmteks3tovhujen8bmbcvibl7d5cvf0u.png)
![\text{Formula for Length of arc:} =(\theta)/(360^(\circ))* 2\pi r](https://img.qammunity.org/2019/formulas/mathematics/high-school/jxzqlyohbwyc22fzs4tptcgiqpu1edfuc7.png)
Length of arc AB is 28 centimeters.
![\text{Formula for Length of arc AB} =(\theta_1)/(360^(\circ))* 2\pi r](https://img.qammunity.org/2019/formulas/mathematics/high-school/rj1xcmh3odwocympvah0caef86nk2pk2yf.png)
![(\theta_1)/(360^(\circ))* 2\pi r=28--------------(1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/wcp0nm5a58644jommsu031urwhxemnha53.png)
Length of arc BC is l centimeters.
![(\theta_2)/(360^(\circ))* 2\pi r=l----------------(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/djoqj8u88xd9jfkmvr3u5noaflvmna461k.png)
Divide equation 1 by equation 2 and we get
![(\theta_1)/(\theta_2)=(28)/(l)](https://img.qammunity.org/2019/formulas/mathematics/high-school/siz5dyenfu7xcoda208gkweejxz1vvcmp4.png)
![\because \theta_1=2\theta_2](https://img.qammunity.org/2019/formulas/mathematics/high-school/jh31makxm4fns69lqnshh1mcg8r0al46ic.png)
![l=(28)/(2)\Rightarrow 14\text{ centimeter}](https://img.qammunity.org/2019/formulas/mathematics/high-school/tu0izdcawsw3cdy4i1p4bokd0p8h4ht80t.png)
Thus, Length of arc BC is 14 centimeter.