5.3k views
11 votes
(04.03 LC) Identify the domain of the exponential function shown in the following graph: (2 points) 5 4 2 TI y = 10 3 4 -5 -4 -3 -2 -1 all real numbers all positive numbers 1​

(04.03 LC) Identify the domain of the exponential function shown in the following-example-1

2 Answers

3 votes

Answer:

The domain is all real numbers

Explanation:

User Ravemir
by
4.6k points
8 votes

Answer:

The domain is all real number:

i.e.


-\infty \:<x<\infty \:

Therefore,


\mathrm{Domain\:of\:}\:10^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

Explanation:

Given the function

y = 10ˣ

Determining the domain of the function y = 10ˣ :

We know that the domain of the function is the set of input or arguments for which the function is real and defined.

In other words,

  • Domain refers to all the possible sets of input values on the x-axis.

From the graph, it is clear that the function has no undefine points nor domain constraints.

Thus, the domain is all real number:

i.e.


-\infty \:<x<\infty \:

Therefore,


\mathrm{Domain\:of\:}\:10^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

User Mirko Catalano
by
4.7k points