5.3k views
11 votes
(04.03 LC) Identify the domain of the exponential function shown in the following graph: (2 points) 5 4 2 TI y = 10 3 4 -5 -4 -3 -2 -1 all real numbers all positive numbers 1​

(04.03 LC) Identify the domain of the exponential function shown in the following-example-1

2 Answers

3 votes

Answer:

The domain is all real numbers

Explanation:

User Ravemir
by
7.6k points
8 votes

Answer:

The domain is all real number:

i.e.


-\infty \:<x<\infty \:

Therefore,


\mathrm{Domain\:of\:}\:10^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

Explanation:

Given the function

y = 10ˣ

Determining the domain of the function y = 10ˣ :

We know that the domain of the function is the set of input or arguments for which the function is real and defined.

In other words,

  • Domain refers to all the possible sets of input values on the x-axis.

From the graph, it is clear that the function has no undefine points nor domain constraints.

Thus, the domain is all real number:

i.e.


-\infty \:<x<\infty \:

Therefore,


\mathrm{Domain\:of\:}\:10^x\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<x<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

User Mirko Catalano
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories