185k views
3 votes
Let tan(x)=2/5 . What is the value of tan(π+x) ?

2 Answers

4 votes


\boxed{\large{\bold{\blue{ANSWER~:) }}}}

Here,

tan(x)=2/5

we have to find the value of tan(π+x)

we know that,


\boxed{\sf{tan(A+B)=(tanA+tanB)/(1-tanA.tanB) } }

According to the question,


\sf{tan(π+x)=(tanπ+tanX)/(1-tanπ.tanX)}

But,

  • tanπ=0
  • tanX=2/5

putting the value,


  • \sf{tan(π+x)=(0+(2)/(5))/(1-0.(2)/(5))}


  • \sf{tan( π+x)=((2)/(5))/(1-0) }


  • \sf{tan( π+x)=((2)/(5))/(1) }


  • \sf{tan( π+x)=(2)/(5)×1 }


  • \sf{tan( π+x)=(2)/(5) }

Therefore,


\sf{The~ value~ of _{_(tan(π+x))}=(2)/(5) }

User Rodrigo Gurgel
by
8.0k points
3 votes

Answer:

tan (pi+x) = 2/5

Explanation:

Find tan (pi +x)

tan(A + B) = (tan A + tan B) / (1 − tan A tan B)

tan(pi + x) = (tan pi + tan x) / (1 − tan pi tan x)

tan(x)=2/5 and tan (pi) = 0

tan(pi + x) = (0 + 2/5) / (1 − 0*2/5)

= 2/5 /(1-0

=2/5

User Wawanopoulos
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories