185k views
3 votes
Let tan(x)=2/5 . What is the value of tan(π+x) ?

2 Answers

4 votes


\boxed{\large{\bold{\blue{ANSWER~:) }}}}

Here,

tan(x)=2/5

we have to find the value of tan(π+x)

we know that,


\boxed{\sf{tan(A+B)=(tanA+tanB)/(1-tanA.tanB) } }

According to the question,


\sf{tan(π+x)=(tanπ+tanX)/(1-tanπ.tanX)}

But,

  • tanπ=0
  • tanX=2/5

putting the value,


  • \sf{tan(π+x)=(0+(2)/(5))/(1-0.(2)/(5))}


  • \sf{tan( π+x)=((2)/(5))/(1-0) }


  • \sf{tan( π+x)=((2)/(5))/(1) }


  • \sf{tan( π+x)=(2)/(5)×1 }


  • \sf{tan( π+x)=(2)/(5) }

Therefore,


\sf{The~ value~ of _{_(tan(π+x))}=(2)/(5) }

User Rodrigo Gurgel
by
5.3k points
3 votes

Answer:

tan (pi+x) = 2/5

Explanation:

Find tan (pi +x)

tan(A + B) = (tan A + tan B) / (1 − tan A tan B)

tan(pi + x) = (tan pi + tan x) / (1 − tan pi tan x)

tan(x)=2/5 and tan (pi) = 0

tan(pi + x) = (0 + 2/5) / (1 − 0*2/5)

= 2/5 /(1-0

=2/5

User Wawanopoulos
by
5.1k points