234k views
3 votes
I NEED HELP PLEASEEEEE

I NEED HELP PLEASEEEEE-example-1
User Daniel Dao
by
7.9k points

1 Answer

11 votes

Answer:

Option (3)

Explanation:


\text{tan}((\theta)/(2))=\text{sin}\theta


\text{tan}((\theta)/(2))=2\text{sin}{(\theta)/(2)} \text{cos}((\theta)/(2))


\frac{\text{sin}(\theta)/(2)}{\text{cos}(\theta)/(2)} =2\text{sin}{(\theta)/(2)}\text{cos}((\theta)/(2))


\text{sin(\theta)/(2)}=2\text{sin}{(\theta)/(2)}\text{cos}^2((\theta)/(2))
\text{sin(\theta)/(2)}=2\text{sin}{(\theta)/(2)}\text{cos}^2((\theta)/(2))
\text{sin}(\theta)/(2)=2\text{sin}{((\theta)/(2))}\text{cos}^2((\theta)/(2))


\text{sin}(\theta)/(2)-2\text{sin}{((\theta)/(2))}\text{cos}^2((\theta)/(2))=0


\text{sin}(\theta)/(2)[1-2\text{cos}^2((\theta)/(2))]=0


\text{sin}(\theta)/(2)=0
\theta=0


1-2\text{cos}^2((\theta)/(2))=0


\text{cos}((\theta)/(2))=(1)/(√(2))


(\theta)/(2)=(\pi)/(4)


\theta=(\pi)/(2)

Therefore, θ = 0 and
(\pi)/(2) are the solutions.

Option (3) will be the answer.

User Pravsels
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories