234k views
3 votes
I NEED HELP PLEASEEEEE

I NEED HELP PLEASEEEEE-example-1
User Daniel Dao
by
3.1k points

1 Answer

11 votes

Answer:

Option (3)

Explanation:


\text{tan}((\theta)/(2))=\text{sin}\theta


\text{tan}((\theta)/(2))=2\text{sin}{(\theta)/(2)} \text{cos}((\theta)/(2))


\frac{\text{sin}(\theta)/(2)}{\text{cos}(\theta)/(2)} =2\text{sin}{(\theta)/(2)}\text{cos}((\theta)/(2))


\text{sin(\theta)/(2)}=2\text{sin}{(\theta)/(2)}\text{cos}^2((\theta)/(2))
\text{sin(\theta)/(2)}=2\text{sin}{(\theta)/(2)}\text{cos}^2((\theta)/(2))
\text{sin}(\theta)/(2)=2\text{sin}{((\theta)/(2))}\text{cos}^2((\theta)/(2))


\text{sin}(\theta)/(2)-2\text{sin}{((\theta)/(2))}\text{cos}^2((\theta)/(2))=0


\text{sin}(\theta)/(2)[1-2\text{cos}^2((\theta)/(2))]=0


\text{sin}(\theta)/(2)=0
\theta=0


1-2\text{cos}^2((\theta)/(2))=0


\text{cos}((\theta)/(2))=(1)/(√(2))


(\theta)/(2)=(\pi)/(4)


\theta=(\pi)/(2)

Therefore, θ = 0 and
(\pi)/(2) are the solutions.

Option (3) will be the answer.

User Pravsels
by
3.6k points