Answer: The complete factorization of the given function over the field of complex numbers is
![f(x)=(x-4)(x+2i)(x-2i).](https://img.qammunity.org/2019/formulas/mathematics/college/3jx597wtvkozkupln1ji8a9go49l1pwk41.png)
Step-by-step explanation: We are given to find the complete factorization of the following polynomial over the set of complex numbers :
![f(x)=x^3-4x^2+4x-16~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)](https://img.qammunity.org/2019/formulas/mathematics/college/mc6hfxbizvmslxn56ze2aw02l9tistgb3p.png)
We will be using the following formulas :
![(i)ab+cb=(a+c)b\\\\(ii)~a^2-b^2=(a+b)(a-b).](https://img.qammunity.org/2019/formulas/mathematics/college/6vqy81c5t5qp6fird14epb0sc739ohy95w.png)
From (i), we have
![f(x)\\\\=x^3-4x^2+4x-16\\\\=x^2(x-4)+4(x-4)\\\\=(x-4)(x^2+4)](https://img.qammunity.org/2019/formulas/mathematics/college/60zued715bxajzl1l9ivwqz32yds1nm6vn.png)
Now, to factorize completely, we will use the following value of imaginary number i(iota) :
![i=√(-1)~~~~~\Rightarrow i^2=-1.](https://img.qammunity.org/2019/formulas/mathematics/college/qmahydy8vj5ie1kbrkkvh30582sg8gli3x.png)
Therefore, we get
![f(x)\\\\=(x-4)(x^2+4)\\\\=(x-4)(x^2-4i^2)\\\\=(x-4)(x^2-(2i)^2)\\\\=(x-4)(x+2i)(x-2i).](https://img.qammunity.org/2019/formulas/mathematics/college/jntpnqxc7zy5cy55t7urhxxdy15qup8760.png)
Thus, the complete factorization of the given function over the field of complex numbers is
![f(x)=(x-4)(x+2i)(x-2i).](https://img.qammunity.org/2019/formulas/mathematics/college/3jx597wtvkozkupln1ji8a9go49l1pwk41.png)