57.8k views
9 votes
State the domain restriction(s) in interval notation of \displaystyle f\left(g\left(x\right)\right)f(g(x)) given: \displaystyle f\left(x\right)=\sqrt{3x-2}f(x)= 3x−2 ​ and \displaystyle g\left(x\right)=x-7g(x)=x−7

User Hstdt
by
5.2k points

1 Answer

10 votes

Answer:

The interval notation for the domain is
[(23)/(3),\infty ].

Explanation:

Consider the provided information.

It is given that
\:f\left(x\right)=√(3x-2),\:\text{ and }\:g\left(x\right)=x-7

We need to find the value of
f\left(g\left(x\right)\right).

Put the value of g(x) in
f\left(g\left(x\right)\right).


f\left(g\left(x\right)\right)=f(x-7) ....(1)

Now, put x=x-7 in
\:f\left(x\right)=√(3x-2)


\:f\left(x-7\right)= √(3(x-7)-2)


\:f\left(x-7\right)= √(3x-21-2)


\:f\left(x-7\right)= √(3x-23)

From equation 1.


f\left(g\left(x\right)\right)=\:f\left(x-7\right)= √(3x-23)

The domain of the function is the set of input values for which a function is defined.

Here, the value of
3x-23 should be greater or equal to 0 as the square root of a negative number is not real.

Domain=
3x-23\geq0


x\geq(23)/(3)

The value of x is all real number greater than
(23)/(3).

Hence, the interval notation for the domain is
[(23)/(3),\infty ].

User Turnsole
by
5.2k points