(a) Take any point
in the plane
. To reflect this point in the
-axis, you need to negate the
-component, so that
![\mathbf T(\vec x)=\begin{bmatrix}-x\\y\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/college/xc6yi2d8bkjbo53n1pd145m74qq48r9pp2.png)
(b) This can be done easily by choosing
![\mathbf T=\begin{bmatrix}-1&0\\0&1\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/college/9erizibm13aox68ihcechupmkthwps3kst.png)
as
![\begin{bmatrix}-1&0\\0&1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-x\\y\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/college/vjj0mea61nfksz4agspsi8jn8n6c97dd5s.png)
(c) Computing
(very easy since it's diagonal) returns the identity matrix
, which as a linear transformation returns whatever it is applied to. Geometrically, we're applying the same reflection twice, which returns the original vector to its starting value/position in the plane.
(d) If
![\mathbf A=\begin{bmatrix}a&b\\c&d\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/college/idkk6uu8fm3rdxm5naejwvnqo3z1460vs2.png)
then
![\mathbf{TA}=\begin{bmatrix}-a&-b\\c&d\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/college/cjbmjs1qipa8vemi4glkqdcaskibjztkhd.png)
![\mathbf{AT}=\begin{bmatrix}-a&b\\-c&d\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/college/hakt4qu1zit02qpma36x34scdh8jp1z3tk.png)
![\mathbf{TAT}=\begin{bmatrix}a&-b\\-c&d\end{bmatrix}](https://img.qammunity.org/2019/formulas/mathematics/college/o6f6d1t7ir8eq80n1vl4gptgcwjn0i8ywe.png)
Multiplying
by
on the left is equivalent to negating the first row of
, and on the right to negative the first column of
. The third product is equivalent to negating the antidiagonal.