(1)
we are given
![x^2+6x+10=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/5h6lwc7mtrp01ggoa0mrdl1c3vuzje56dz.png)
we can use quadratic formula
![\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}](https://img.qammunity.org/2019/formulas/mathematics/high-school/tvyw634bg3e5weundhs92w73ziktpdrdyf.png)
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/anbffapy80mickqb01jpbq5ttpr4bw5vtb.png)
now, we can compare and find a , b and c
we get
![a=1,b=6,c=10](https://img.qammunity.org/2019/formulas/mathematics/high-school/vy3vm2zg6qop086b75mvig26jv48sluwh9.png)
now, we can plug these values into quadratic formula
![x=(-6\pm √(6^2-4(1)(10)))/(2(1))](https://img.qammunity.org/2019/formulas/mathematics/high-school/v42vae4ihvijhmdyoxvm1cn6qs67lxqe9y.png)
![x=(-6+√(6^2-4\cdot \:1\cdot \:10))/(2\cdot \:1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/tpgsdobf3v9knto8uo0ekzvn9snogfhct0.png)
we can simplify it
![x=-3+i](https://img.qammunity.org/2019/formulas/mathematics/high-school/svpnk52lj2hvvqozr5dohcd5n8968t0yhf.png)
![x=(-6-√(6^2-4\cdot \:1\cdot \:10))/(2\cdot \:1)](https://img.qammunity.org/2019/formulas/mathematics/high-school/369xi51r34l78geoew6o1vlgf94pzojjq9.png)
![x=-3-i](https://img.qammunity.org/2019/formulas/mathematics/high-school/xynzlgfbcwriwpbl3ogwxf67xyczxx602l.png)
so, we will get solution
{−3+i, −3−i}.........Answer
(2)
we are given equation as
![x^2-8x+14=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/krotb8s169xby24i61g1b0oa5yil4zgef6.png)
Since, Jamal solve this equation by completing square
so, firstly we will move constant term on right side
so, subtract both sides by 14
![x^2-8x+14-14=0-14](https://img.qammunity.org/2019/formulas/mathematics/high-school/yh89ocq024ixsmj0d2kpi5r014meq5fvn1.png)
![x^2-8x=-14](https://img.qammunity.org/2019/formulas/mathematics/high-school/fpzbdsm1d60lzm9cbeli352g1w5prt0x3r.png)
we can write
![-8x=-2* 4* x](https://img.qammunity.org/2019/formulas/mathematics/high-school/q8hm1j82a0z93or8c0gf52u8gcluorvd6v.png)
so, we will add both sides by 4^2
![x^2-8x+4^2=-14+4^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/w5el16cm1b8rvqawuinsxb0e7x9xfcly59.png)
we get
..............Answer