We know that
triangles ADE and ABC are similar triangles
so, the ratios of their sides must be same
now, we will find value of sides
we are given
AD=12
DB=6
AE=14
EC=7
![AB=AD+DB](https://img.qammunity.org/2019/formulas/mathematics/middle-school/t0wl3xl9cc8sldtvy7kycb9q03tvbefcwf.png)
now, we can plug values
![AB=12+6](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ejdjsny1wizp8ojoc22wbwa614one54jp5.png)
![AB=18](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9knountmdf7345nmvfki2ikuzqwfbuksjk.png)
so, we can get ratio
![(DE)/(BC) =(AD)/(AB)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fh2ghj7brqr3meq6kdld8jguzcgq41nykv.png)
now, we can plug values
![(DE)/(BC) =(12)/(18)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/59a31ejnn6u296zvkmixnec8fmr5xykf0e.png)
So, the ratio in simplest form is
..............Answer