123k views
1 vote
Find the inverse of the function below f(x)=2^x+6

1 Answer

3 votes


Solution, \mathrm{Inverse\:of}\:2^x+6:\quad (\ln \left(x-6\right))/(\ln \left(2\right))


Steps:

Definition
If\;a\;function\;f\left(x\right)\;s\;mapping\;x\;to\;y,\;then\;the\;inverse\;function\;of\;f\left(x\right)\;maps\;y\;back\;to\;x.


y=2^x+6


\mathrm{Interchange\:the\:variables}\:x\:\mathrm{and}\:y, x=2^y+6


\mathrm{Solve}\:x=2^y+6\:\mathrm{for}\:y, y=(\ln \left(x-6\right))/(\ln \left(2\right)), (\ln \left(x-6\right))/(\ln \left(2\right))

The correct answer is
(\ln \left(x-6\right))/(\ln \left(2\right))

Hope this helps!!!

<3 -austint1414


User Thomas Heywood
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories