123k views
1 vote
Find the inverse of the function below f(x)=2^x+6

1 Answer

3 votes


Solution, \mathrm{Inverse\:of}\:2^x+6:\quad (\ln \left(x-6\right))/(\ln \left(2\right))


Steps:

Definition
If\;a\;function\;f\left(x\right)\;s\;mapping\;x\;to\;y,\;then\;the\;inverse\;function\;of\;f\left(x\right)\;maps\;y\;back\;to\;x.


y=2^x+6


\mathrm{Interchange\:the\:variables}\:x\:\mathrm{and}\:y, x=2^y+6


\mathrm{Solve}\:x=2^y+6\:\mathrm{for}\:y, y=(\ln \left(x-6\right))/(\ln \left(2\right)), (\ln \left(x-6\right))/(\ln \left(2\right))

The correct answer is
(\ln \left(x-6\right))/(\ln \left(2\right))

Hope this helps!!!

<3 -austint1414


User Thomas Heywood
by
5.6k points