Answer:
The Probability that Event A and Event D occur is equal to the probability Event A occurs times the probability that Event D occurs, given that A has occurred.
![P(A\cap D)=P(A)\cdot P(D/A)](https://img.qammunity.org/2019/formulas/mathematics/college/l4axdmo13c6daltt9frx5jxawqul6l92al.png)
We can find the values of
and
using the above form formula.
;
![P(A/D)=(P(D\cap A))/(P(D))](https://img.qammunity.org/2019/formulas/mathematics/college/labzeoxhbz41omp2voqf0tho88sitn60eb.png)
From the given table, we have the values of P(A), P(D),
and
.
Since, Probability=
![(The number of wanted outcomes )/(the number of possible outcomes)](https://img.qammunity.org/2019/formulas/mathematics/college/f7by5wlkr5jyt7adlk9cs4ecm2boy9b4oh.png)
∴
,
,
and
![P(D\cap A)=(2)/(17)](https://img.qammunity.org/2019/formulas/mathematics/college/21t4nfope4enmfwp0sjvwbycj6fi48akpi.png)
Now, putting these values in above formula we get,
![P(D/A)=\frac{(2)/(17)} {(8)/(17)}](https://img.qammunity.org/2019/formulas/mathematics/college/6hxxsfomm7fes1xezrj7ymy9ciyxrx5uy0.png)
![P(D/A)=\frac{2} {8}=(1)/(4)](https://img.qammunity.org/2019/formulas/mathematics/college/aa57lmbzkaidts292d5tbqqsa1mbj0bhps.png)
.
![P(A/D)=\frac{(2)/(17)} {(10)/(17)}=(2)/(10)](https://img.qammunity.org/2019/formulas/mathematics/college/i9u9ni01b5h9ze9vzrgpx6owcb13vzzrjj.png)
![P(A/D)=(1)/(5)](https://img.qammunity.org/2019/formulas/mathematics/college/5rvro73med8u31dg960b1ihedcp19d8uvr.png)
As, you can see above that the values of P(A|D) and P(D|A) are not equal.