Yes, you're right! The first step is rewriting the equation as
![\ln(a) + \ln(b^x) = M](https://img.qammunity.org/2019/formulas/mathematics/college/biqsuyjycfdf42hw3lmu5942sfosc9uz1i.png)
Subtract
from both sides:
![\ln(b^x) = M-\ln(a)](https://img.qammunity.org/2019/formulas/mathematics/college/6gjhrqc8cjgfm47bg2lj1n091qtms45idu.png)
Use the property
to rewrite the equation as
![x\ln(b) = M-\ln(a)](https://img.qammunity.org/2019/formulas/mathematics/college/rgcfkxpg5t5ofz7cn96ci60ecurxpmdk9x.png)
Divide both sides by
![\ln(b)](https://img.qammunity.org/2019/formulas/mathematics/college/6i0wrzqq174g763q4sy1b4r3vyloy9a0g8.png)
![x = (M-\ln(a))/(\ln(b))](https://img.qammunity.org/2019/formulas/mathematics/college/bya6jj9y5i63o411hmq0qvmakto8jm0z3t.png)
Alternative strategy:
Consider both sides as exponents of e:
![e^(\ln(ab^x)) = e^M](https://img.qammunity.org/2019/formulas/mathematics/college/yhj0cpovaoqluiy7wwn97l2150gywwepgy.png)
Use
to write
![ab^x = e^M](https://img.qammunity.org/2019/formulas/mathematics/college/s95wh49glsuymyb6hi80iopn84whrl60gk.png)
Divide both sides by a:
![b^x = (e^M)/(a)](https://img.qammunity.org/2019/formulas/mathematics/college/fhsu3j43jgim98qdvrleq544eraznmry47.png)
Consider the logarithm base b of both sides:
![x = \log_b\left((e^M)/(a)\right)](https://img.qammunity.org/2019/formulas/mathematics/college/o67bmnujrbfxsnxbn1qq6o5u11i2f8f4bd.png)
The two numbers are the same: you can check it using the rule for changing the base of logarithms