227k views
5 votes
I need help!

Simplifying radical expressions

1)

\sqrt[3]{135}
2)

- 5 {}^(3) √(40)
3)

{2}^(3) √(5) * {4}^(3) √(8)

1 Answer

4 votes

Here is the solution...

1)
\sqrt[3]{135} \\

Solution

We can rewrite
\sqrt[3]{135} = \sqrt[3]{27} *\sqrt[3]{5}

Here,
\sqrt[3]{27} = 3

Now substitute the value, we get


\sqrt[3]{135} = 3 \sqrt[3]{5}

The answer is
3\sqrt[3]{5}


2)
-5\sqrt[3]{40} </p><p><strong>Solution</strong></p><p>[tex]-5\sqrt[3]{40} = -5\sqrt[3]{8} *\sqrt[3]{5}

Here
\sqrt[3]{8} = \sqrt[3]{2^(3) } = 2\\

Therefore, we get
-5*2\sqrt[3]{5} = -10 \sqrt[3]{5}

The answer is-10 \sqrt[3]{5}[/tex]


2)
2\sqrt[3]{5} * 4\sqrt[3]{8}

Solution


\sqrt[3]{8} = 2

Now plug in the above in the given expression, we get


2\sqrt[3]{5} * 4*2 = 16\sqrt[3]{5} {2*4*2 = 16]

The answer is
16\sqrt[3]{5}

User Sudharsan Selvaraj
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories