227k views
5 votes
I need help!

Simplifying radical expressions

1)

\sqrt[3]{135}
2)

- 5 {}^(3) √(40)
3)

{2}^(3) √(5) * {4}^(3) √(8)

1 Answer

4 votes

Here is the solution...

1)
\sqrt[3]{135} \\

Solution

We can rewrite
\sqrt[3]{135} = \sqrt[3]{27} *\sqrt[3]{5}

Here,
\sqrt[3]{27} = 3

Now substitute the value, we get


\sqrt[3]{135} = 3 \sqrt[3]{5}

The answer is
3\sqrt[3]{5}


2)
-5\sqrt[3]{40} </p><p><strong>Solution</strong></p><p>[tex]-5\sqrt[3]{40} = -5\sqrt[3]{8} *\sqrt[3]{5}

Here
\sqrt[3]{8} = \sqrt[3]{2^(3) } = 2\\

Therefore, we get
-5*2\sqrt[3]{5} = -10 \sqrt[3]{5}

The answer is-10 \sqrt[3]{5}[/tex]


2)
2\sqrt[3]{5} * 4\sqrt[3]{8}

Solution


\sqrt[3]{8} = 2

Now plug in the above in the given expression, we get


2\sqrt[3]{5} * 4*2 = 16\sqrt[3]{5} {2*4*2 = 16]

The answer is
16\sqrt[3]{5}

User Sudharsan Selvaraj
by
7.4k points

No related questions found