Given points (5,102) (4,74) and (-2,-10)
We frame 3 equations using the given points
![y=ax^2+bx+c](https://img.qammunity.org/2019/formulas/mathematics/high-school/df9zjslv5nlii4w2w8fyvev3848jkrh9r5.png)
Plug in (5,102)
![102=a(5)^2+b(5)+c](https://img.qammunity.org/2019/formulas/mathematics/middle-school/yal5ph3u1v0x2e7rbhmsrle924ow9xgnfk.png)
102 = 25a +5b + c -------> first equation
Plug in (4,74)
![74=a(4)^2+b(4)+c](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ujzje656e3zjqhzvr3kgq3ge3sxdocp8uy.png)
74 = 16a +4b + c----> second equation
Plug in (-2,-10)
![-10=a(-2)^2+b(-2)+c](https://img.qammunity.org/2019/formulas/mathematics/middle-school/z66jz5f188iqv1sbi8c3vxa62oxgphcij7.png)
-10 = 4a -2b + c -----> third equation
Now we use the three equation and solve for a,b,c
Use first and second equation and subtract it
102 = 25a +5b + c
-74 = -16a -4b - c
----------------------------------
28 = 9a + b --------------> fourth equation
Subtract third equation from first equation
102 = 25a +5b + c
10 = -4a +2b - c
----------------------------------
112 = 21a + 7b --------------> fifth equation
Use fourth and fifth equation
28 = 9a + b
112 = 21a + 7b
Multiply the fourth equation by -7
-196= -63a -7b
112 = 21a + 7b
-----------------------
-84 = -42a
Divide by -42 on both sides
a= 2
Plug in the value of a=2 in fourth equation
28 = 9a + b
28 = 9(2) + b
28 = 18 + b ( subtract 18 from both sides)
b = 10
Plug in the values in third equation and find out c
-10 = 4a -2b + c
-10= 4(2) -2(10)+c
-10 = -12 + c
c= 2
We got a=2, b=10 and c=2
So equation becomes
![y=2x^2+10x+2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/vm1qiozkw7tx8s6t0ed5wvgvt2po13i6oj.png)