220k views
3 votes
How do I solve this equation: 2cos(x)sin(x)=cos(x) ?

User Amit Sahu
by
5.4k points

1 Answer

4 votes


2\cos(x)\sin(x)=\cos(x)\ \ \ \ |\text{subtract}\ \cos(x)\ \text{from both sides}\\\\2\cos(x)\sin(x)-\cos(x)=0\\\\\cos(x)(2\sin(x)-1)=0\iff\cos(x)=0\ \vee\ 2\sin(x)-1=0\\\\\cos(x)=0\to x=(\pi)/(2)+k\pi,\ k\in\mathbb{Z}\\\\2\sin(x)-1=0\qquad|\text{add 1 to both sides}\\\\2\sin(x)=1\qquad|\text{divide both sides by 2}\\\\\sin(x)=(1)/(2)\to x=(\pi)/(6)+2k\pi\ \vee\ x=(5\pi)/(6)+2k\pi,\ k\in\mathbb{Z}


Answer:\\\\x=(\pi)/(2)+k\pi\ \vee\ x=(\pi)/(6)+2k\pi\ \vee\ x=(5\pi)/(6)+2k\pi\ for\ k\in\mathbb{Z}

User Christophe Douy
by
5.6k points