77.4k views
1 vote
On what interval/s is the following function decreasing? (Use interval notation. Round answers to 2 decimal places.)

m(x) = 4x^3 - 5x^2 - 7x

please explain how you do it, thank you!

User Dotixx
by
5.1k points

1 Answer

4 votes

You are given the function
m(x) = 4x^3 - 5x^2 - 7x.

1. Find the derivative m'(x):


m'(x)=4\cdot 3x^2-5\cdot 2x-7=12x^2-10x-7.

2. Find stationary points, solving the equation m'(x)=0:


12x^2-10x-7=0,\\ \\D=(-10)^2-4\cdot 12\cdot (-7)=100+336=436,\\ \\√(D)=√(436)=2√(109),\\ \\x_1=(10-2√(109))/(24)=(5-√(109))/(12),\ x_2=(10+2√(109))/(24)=(5+√(109))/(12).

3. Determine the signs of derivative:

  • when
    x<(5-√(109))/(12), then
    m'(x)>0 (function is increasing);
  • when
    (5-√(109))/(12)\le x\le (5+√(109))/(12), then
    m'(x)<0 (function is decreasing);
  • when
    x>(5+√(109))/(12), then
    m'(x)>0 (function is increasing).

Thus, function is decreasing for
x\in \left((5-√(109))/(12), (5+√(109))/(12)\right)\approx (-0.45,1.29).

User Shirish Bari
by
5.9k points