You are given the function
![m(x) = 4x^3 - 5x^2 - 7x.](https://img.qammunity.org/2019/formulas/mathematics/college/3xgoxg22ind3giqyf08k1qvu0mim5kfmzv.png)
1. Find the derivative m'(x):
![m'(x)=4\cdot 3x^2-5\cdot 2x-7=12x^2-10x-7.](https://img.qammunity.org/2019/formulas/mathematics/college/vroijba3x1ye9r17razymgx1qz3275n9kj.png)
2. Find stationary points, solving the equation m'(x)=0:
![12x^2-10x-7=0,\\ \\D=(-10)^2-4\cdot 12\cdot (-7)=100+336=436,\\ \\√(D)=√(436)=2√(109),\\ \\x_1=(10-2√(109))/(24)=(5-√(109))/(12),\ x_2=(10+2√(109))/(24)=(5+√(109))/(12).](https://img.qammunity.org/2019/formulas/mathematics/college/ygmt7el4ybsse9n0iz6e9kwt6h0cuybksl.png)
3. Determine the signs of derivative:
- when
then
(function is increasing); - when
then
(function is decreasing); - when
then
(function is increasing).
Thus, function is decreasing for