231k views
18 votes
I need this ASAP please!

I need this ASAP please!-example-1
User Yelsayed
by
7.8k points

2 Answers

7 votes

Answer:

This may be wrong but: (2x - 5y) ((2x)^2 + 10xy + (5y)^2) over (2x + 5y) (4x^2 + 10xy + 25y^2)

Explanation:

User Patan
by
8.0k points
11 votes

Answer: 2x − 5y / 2x + 5y

Explanation:

8x^3 − 125y^3/(2x + 5y)3 ÷ 4x^2 + 10xy + 25y^2/4x^2 + 20xy + 25y^2

To divide by a fraction, multiply by its reciprocal.

8x^3 − 125y^3/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y^2

Simplify the numerator.

Rewrite 8x^3 as (2x)^3.

(2x)^3 − 125y^3/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y^2

Rewrite 125y^3 as (5y)^3.

(2x)^3 − (5y)^3/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y^2

Since both terms are perfect cubes, factor using the difference of cubes formula,

a^3 − b^3 = (a − b) (a^2 + ab + b^2) where a = 2x and b = 5y.

(2x − (5y)) ((2x)^2 + 2x (5y) + (5y)^2)/(2x + 5y)^3 4x + 20xy + 25y^2/ 4x^2 + 10xy + 25y^2

Multiply 5 by −1.

(2x − 5y) ((2x)^2 + 2x (5y) + (5y)^2)/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y^2

Apply the product rule to 2x.

(2x − 5y) (22x^2 + 2x (5y) + (5y)^2)/(2x + 5y)3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y2

Raise 2 to the power of 2.

(2x − 5y) (4x^2 + 2x (5y) + (5y)^2)/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y^2

Rewrite using the commutative property of multiplication.

(2x − 5y) (4x^2 + 2 ⋅ 5xy + (5y)^2)/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y^2

Multiply 2 by 5.

(2x − 5y) (4x^2 + 10xy + (5y)^2)/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/ 4x^2 + 10xy + 25y^2

Apply the product rule to 5y.

(2x − 5y) (4x^2 + 10xy + 52y^2)/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y^2

Raise 5 to the power of 2.

(2x − 5y) (4x^2 + 10xy + 25y^2)/(2x + 5y)^3 ⋅ 4x^2 + 20xy + 25y^2/4x^2 + 10xy + 25y^2

Cancel the common factor of 4x^2 + 10xy + 25y^2.

((2x − 5y)/(2x + 5y)^3) (4x^2 + 20xy + 25y^2)

Multiply

(2x − 5y) (4x^2 + 20xy + 25y^2)/ (2x + 5y)^3

Factor using the perfect square rule.

Rewrite 4x^2 as (2x)^2.

(2x − 5y) ((2x)^2 + 20xy + 25y^2)/ (2x + 5y)^3

Rewrite 25y^2 as (5y)^2.

(2x − 5y) ((2x)^2 + 20xy + (5y)^2)/ (2x + 5y)^3

Check that the middle term is two times the product of the numbers being squared in the first

term and third term.

20xy = 2 ⋅ (2x) ⋅ (5y)

Rewrite the polynomial.

(2x − 5y) ((2x)2 + 2 ⋅ (2x) ⋅ (5y) + (5y)2)/(2x + 5y)^3

Factor using the perfect square trinomial rule a^2 + 2ab + b^2 = (a + b)^2, where a = 2x and b = 5y.

(2x − 5y) (2x + 5y)^2/ (2x + 5y)^3

Cancel the common factor of (2x + 5y)^2 and (2x + 5y)^3.

Factor (2x + 5y)^2 out of (2x − 5y) (2x + 5y)^2.

(2x + 5y)^2 (2x − 5y) / (2x + 5y)^3

Cancel the common factors.

2x − 5y / 2x + 5y

User DotNetBeginner
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories