25.2k views
3 votes
Find the area of the region bounded by the parabola y=5x2y=5x2, the tangent line to this parabola at (2,20)(2,20) and the xx axis.

1 Answer

4 votes

1. Find the equation of tangent line at point (2,20).


y'=(5x^2)'=5\cdot 2x=10x,\\ \\y'(2)=10\cdot 2=20.

The equation of the tangent line is


y=20(x-2)+20,\\ \\y=20x-20.

2. Express x:


y=20x-20\Rightarrow x=(y)/(20)+1;\\ \\y=5x^2\Rightarrow x=\sqrt{(y)/(5)}.

3. Find the area of bounded region:


A=\int\limits^(20)_0 {\left((y)/(20)+1-\sqrt{(y)/(5)} } \right)\, dy=\left((y^2)/(40)+y-(2√(y^3) )/(3√(5) ) \right)\big|^(20)_0=


=(400)/(40)+20-(2√(20^3) )/(3√(5) )=30-(80)/(3)=(10)/(3)\ sq. un.

Answer:
(10)/(3)\ sq. un.

User Mehdi Souregi
by
7.5k points

Related questions