70.4k views
0 votes
Evaluate and simplify the indicated quantity. ((sin t)i + (cos t)j + tk) × ((cos t)i + (sin t)j)

User Leonela
by
5.2k points

1 Answer

0 votes

let us consider


\vec{A} = sint\hat{i}+cost\dot{j}+ t\hat{k}\ ,\vec{B} =cost\hat{i} + sint\hat{j}

now we have to evaluate


\vec{A}* \vec{B}

To proof =


\vec{A}* \vec{B}=\begin{vmatrix}i &j &k \\ sint&cost &t \\ cost&sint &0 \end{vmatrix}

now solving the determinant form

we get

=
\hat{i}\left ( -sint \right )-\hat{j}\left ( -tcost \right )+\hat{k}\left ( sin^(2)t - cos^(2)t\right )

by using the formula


sin^(2)t + cos^(2)t = 1


cos^(2)t = sin^(2) t - 1

put this value in the above equation

we get

=
\hat{i}\left ( -sint \right )+\hat{j}\left ( tcost \right )+\hat{k}\left ( 2sin^(2)t - 1\right )

Hence proved







User Fishstick
by
6.0k points