![(-2x^3 +x -5) and (x^3 -3x-4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4tm1ujcjt2bfhz9v8hkzfna0sc40yzn2uq.png)
(a) To find product we multiply both expressions
First distribute -2x^3 inside the second parenthesis
![(x^3 -3x-4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/k46ox37gkk7iggpa0y3k65py6mncbqznf7.png)
![-2x^6 + 6x^4 +8x^3](https://img.qammunity.org/2019/formulas/mathematics/high-school/u98dzz5kckcm8n98g8tf0nldex96sugauw.png)
next distribute x inside the second parenthesis
![(x^3 -3x-4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/k46ox37gkk7iggpa0y3k65py6mncbqznf7.png)
![(x^4 -3x^2-4x)](https://img.qammunity.org/2019/formulas/mathematics/high-school/vnmuhn4sai9yey2ml62a5780c78g920ej4.png)
Next distribute -5 inside the second parenthesis
![(x^3 -3x-4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/k46ox37gkk7iggpa0y3k65py6mncbqznf7.png)
![(-5x^3 + 15x + 20)[](https://img.qammunity.org/2019/formulas/mathematics/high-school/vbrr6mfgfo5q8qmafeprjvhtug8bbpjpdi.png)
Finally we add all the product terms we got
![-2x^6 + 6x^4 +8x^3 + x^4 -3x^2-4x + -5x^3 + 15x + 20](https://img.qammunity.org/2019/formulas/mathematics/high-school/sgx0p2jlq31c9m6sh9xhqu72vggjv1tvw3.png)
Combine like terms
![-2x^6 + 7x^4 + 3x^3 - 3x^2 + 11 x + 20](https://img.qammunity.org/2019/formulas/mathematics/high-school/prv7zhhuphvwwe1cob7ydujlcz2dyfzr1p.png)
(b) yes they are same
Because interchanging of expression does not affect the product
For example 5 * 2 = 2*5 they are same.
So both the product are equal