186k views
4 votes
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!

What is the solution set of the equation using the quadratic formula?

x2 +2x + 10 = 0

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! What is the solution set of the-example-1
User Pozs
by
8.0k points

2 Answers

3 votes


x^2+2x+10=0\ \ \ \ |-10\\\\x^2+2x=-10\\\\x^2+2\cdot x\cdot1=-10\ \ \ \ |+1^2\\\\\underbrace{x^2+2\cdot x\cdot1+1^2}_((a+b)^2=a^2+2ab+b^2)=-10+1^2\\\\(x+1)^2=-9\to x+1=\pm√(-9)\\\\x+1=\pm3i\ \ \ |-1\\\\\boxed{x=-1-3i\ or\ x=-1+3i}\\\\Used\ i=√(-1)

Quadratic formula:


ax^2+bx+c=0\\\\\Delta=b^2-4ac\\\\x_1=(-b-\sqrt\Delta)/(2a),\ x_2=(-b+\sqrt\Delta)/(2a)\\\\We\ have\ x^2+2x+10=0\\\\a=1;\ b=2;\ c=10\\\\\Delta=2^2-4\cdot1\cdot10=4-40=-36\\\\\sqrt\Delta=√(-36)=√(36)\cdot√(-1)=6i\\\\x_1=(-2-6i)/(2\cdot1)=-1-3i\\\\x_2=(-2+3i)/(2\cdot1)=-1+3i

User Rahnzo
by
8.2k points
5 votes

x² + 2x + 10 = 0

a = 1, b = 2, c = 10

x =
\frac{-(b) +/- \sqrt{(b)^(2)  - 4(a)(c) }}{2a}

=
\frac{-(2) +/- \sqrt{(2)^(2)  - 4(1)(10) }}{2(1)}

=
(-2 +/- √((4 - 40) ))/(2)

=
(-2 +/- √((-36)))/(2)

=
(-2 +/- (6i))/(2)

= -1 +/- (3i)

= -1 + 3i, -1 - 3i


User Naren Neelamegam
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories