To find the local maximum of the function
you should:
1. find the derivative
![g'(x)=3x^2+10x-17;](https://img.qammunity.org/2019/formulas/mathematics/high-school/xr0tqlit9f682kpi8on9b94skf6vx689ez.png)
2. find stationary points. Equate derivative to zero and then solve the equation
![3x^2+10x-17=0,\\ \\D=10^2-4\cdot 3\cdot (-17)=100+204=304,\\ \\√(D)=4√(19) ,\\ \\x_(1,2)=(-10\pm 4√(19))/(2\cdot 3)=(-5\pm 2√(19))/(3).](https://img.qammunity.org/2019/formulas/mathematics/high-school/98curryt8q0n0ls3pua78r4f6ikd4ddo5t.png)
3. Determine signs of g'(x):
- when
then g'(x)>0 (function g(x) is increasing); - when
then g'(x)<0 (function g(x) is decreasing); - when
then g'(x)>0 (function g(x) is increasing).
4. This means that
is point of maximum and
is point of minimum.
5. The maximum value of g(x) is at
![x=(-5-2√(19))/(3):](https://img.qammunity.org/2019/formulas/mathematics/high-school/uqvi4c4kqx9766sp7w8ie5wkp3xa5vnavt.png)
![g\left((-5-2√(19))/(3)\right)=\left((-5-2√(19))/(3)\right)^3+5\left((-5-2√(19))/(3)\right)^2-17\left((-5-2√(19))/(3)\right)-21\approx 65.6705658\approx 65.671](https://img.qammunity.org/2019/formulas/mathematics/high-school/31samf0ezoxuaib6zzfy3hvhccxf8kr898.png)