The perimeter of the parallelogram is
![2√(85)+12](https://img.qammunity.org/2019/formulas/mathematics/high-school/t6n8ck5xqn3pewftbv69gba3baky8odwg1.png)
Step-by-step explanation
According to the diagram below, Vertices of the parallelogram ABCD are: A (-3, 1) , B (4, 7) , C (4, 1) and D (-3, -5)
Using distance formula.....
Length of AB
![= √((-3-4)^2+(1-7)^2)=√((-7)^2+(-6)^2)= √(49+36)=√(85)](https://img.qammunity.org/2019/formulas/mathematics/high-school/1h4z34b6avm28019gi1bkknto53m1tq33p.png)
Length of BC
![=√((4-4)^2+(7-1)^2)=√(0+6^2)=√(36)=6](https://img.qammunity.org/2019/formulas/mathematics/high-school/d4xi8a2sy4q3ivsfx44t9uapvzykoufp7x.png)
As the opposite sides are equal in any parallelogram, so
and
![AD=BC= 6](https://img.qammunity.org/2019/formulas/mathematics/high-school/r50zpi5rar32us46dvf556jvbgso6whnvl.png)
Thus the perimeter
![=2(√(85) +6)= 2√(85)+12](https://img.qammunity.org/2019/formulas/mathematics/high-school/iwxpmkyp8ez81417ags152k12qhd9k4cur.png)