Answer:
![{a}^(2) - {b}^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/cj9yhcikaprio48rl5dktsvepzw9ys2rqz.png)
![a - b](https://img.qammunity.org/2019/formulas/mathematics/high-school/bb09ge8bxeyg3v9gl29t3y8z59ajw34yie.png)
![a + b](https://img.qammunity.org/2019/formulas/mathematics/high-school/del4b6ijx9qd602ouz17pttmozbfjqu8yo.png)
Explanation:
The given expression that represents the volume of the rectangular prism is:
![v = {a}^(4) - 2 {a}^(2) {b}^(2) + {b}^(4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/blm5bolft86d5dezdcpjvsgruq35m2v12v.png)
We can rewrite this to reveal a perfect square pattern.
![v =( { {a}^(2)) }^(2) - 2 {a}^(2) {b}^(2) + ( {b}^(2))^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/j2vd7sesx2icbnvp101z79oiiddgko93tp.png)
We factor using perfect squares to obtain:
![v = ( {a}^(2) - {b}^(2) )^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/g1xs562y55l26nuym0efdto6xg62b0nu6s.png)
![v = ( {a}^(2) - {b}^(2) )( {a}^(2) - {b}^(2) )](https://img.qammunity.org/2019/formulas/mathematics/high-school/dk6zya6kygylumxgy67b8mcbdrtrl6tr3y.png)
Volume is three dimensional so we need a third factor different from 1.
We further factor one of the difference of two squares to get:
![v = ( {a}^(2) - {b}^(2))(a - b)(a + b)](https://img.qammunity.org/2019/formulas/mathematics/high-school/5e1n3voc2516vbrto0mcylmn7ula1srl08.png)
So pick the following unique dimensions from the possible answers:
![{a}^(2) - {b}^(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/cj9yhcikaprio48rl5dktsvepzw9ys2rqz.png)
![a - b](https://img.qammunity.org/2019/formulas/mathematics/high-school/bb09ge8bxeyg3v9gl29t3y8z59ajw34yie.png)
![a + b](https://img.qammunity.org/2019/formulas/mathematics/high-school/del4b6ijx9qd602ouz17pttmozbfjqu8yo.png)