Given a function
and a number
, if you multiply the whole function by
, you have a vertical dilation:
![f(x) \to kf(x) = \begin{cases} \text{vertical dilation} & \text{ if }k>1\\\text{vertical compression} & \text{ if }0<k<1 \end{cases}](https://img.qammunity.org/2019/formulas/mathematics/high-school/v91hdca9yafsmagyn2u6bw51rtx7jva7iz.png)
If
, you follow the same steps as before, but you also reflect the function around the x-axis.
If, instead, you multiply only the argument by
, you have a horizontal dilation:
![f(x) \to f(kx) = \begin{cases} \text{horizontal dilation} & \text{ if }0<k<1\\\text{horizontal compression} & \text{ if }k>1 \end{cases}](https://img.qammunity.org/2019/formulas/mathematics/high-school/9kus5ljcyvwg9wosa2rmuy7wrqtzlt50v5.png)
If
, you follow the same steps as before, but you also reflect the function around the y-axis.