Answer :
![(x^2 - 6x + 9) + (y^2- 4y + 4) = 3 + (9 + 4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/8f1tuv79xyqrmuuth8w83zkpbjqnk6bryg.png)
Center is (-3,3) and radius = 4
![(x + 4)^2 + (y - 3)^2 = 6^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/rroi2nk6xk01skzu91v8u3f4us593fno4g.png)
(1) Step 1:
![x^2 - 6x + y^2 - 4y = 3](https://img.qammunity.org/2019/formulas/mathematics/high-school/ed21ohkw3ooc9407c3g6g0shrlywk7qm80.png)
Step 2:
![(x^2- 6x) + (y^2 - 4y) = 3](https://img.qammunity.org/2019/formulas/mathematics/high-school/hjoitqarqrjbh0m2aakob0enink9h7mue0.png)
In completing the square method we take coefficient of x and divide by 2 and the square it . Then add it on both sides
The coefficient of x is -6.
= (-3)^2 = 9
The coefficient of y is -4.
= (-2)^2 = 4
Step :
![(x^2- 6x + 9) + (y^2 - 4y + 4) = 3 +9 + 4](https://img.qammunity.org/2019/formulas/mathematics/high-school/wv2mog2od3j44o6uj5inljjebom3yshrp0.png)
(2)
![x^2 + y^2 + 6x - 6y + 2 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/bz94shxnilxwgkybc7lozasly99i7wdngu.png)
To find center and radius we write the equation in the form of
using completing the square form
Where (h,k) is the center and 'r' is the radius
![x^2 + y^2 + 6x - 6y + 2 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/bz94shxnilxwgkybc7lozasly99i7wdngu.png)
![(x^2 + 6x) + (y^2 - 6y) + 2 = 0](https://img.qammunity.org/2019/formulas/mathematics/high-school/mxcwipn1gvbbvfqhg9rsmpqngpgkleeopf.png)
In completing the square method we take coefficient of x and divide by 2 and the square it . Then add it on both sides
![(x^2 + 6x + 9) + (y^2 - 6y + 9) = -2 + 9 + 9](https://img.qammunity.org/2019/formulas/mathematics/high-school/3rvom3id3v0hsdee91sqizzaw9bo9nbik6.png)
![(x + 3)^2 + (x - 3)^2 = 16](https://img.qammunity.org/2019/formulas/mathematics/high-school/2lvstu61irtnpswwxuhb3rhggggbh7cqo6.png)
Here h= -3 and k=3 and
so r= 4
Center is (-3,3) and radius = 4
(c) Step 1:
![x^2 + 8x + y^2 - 6y = 11](https://img.qammunity.org/2019/formulas/mathematics/high-school/cxfgeii2o69kv81tskpm3d2ji7u43gtpvu.png)
Step 2:
![(x^2 + 8x) + (y^2 - 6y) = 11](https://img.qammunity.org/2019/formulas/mathematics/high-school/qbi96mhjlfu6wd659z7gv6echbo59r0aru.png)
Step 3:
![(x^2 + 8x + 16) + (y^2 - 6y + 9) = 11 + (16 + 9)](https://img.qammunity.org/2019/formulas/mathematics/high-school/hnlkwvf57lmpg2sm1x1kvs0jeajow2o66y.png)
Step 4:
![(x^2 + 8x + 16) + (y^2 - 6y + 9) = 36](https://img.qammunity.org/2019/formulas/mathematics/high-school/wsy0j9cn5f03h4g0aiwamkf56n2a2n2e5c.png)
We factor out each quadratic
(x^2 + 8x + 16) = (x+4)(x+4) =
![(x+4)^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/3qf8w6vr3ep836gtvmnz8k2gvrk39l0a40.png)
((y^2 - 6y + 9)) = (x-3)(x-3) =
![(x-3)^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/2r51yssf88barqmzzcghjdzqwvdp2yzjo6.png)
Step 5 :
![(x + 4)^2 + (y - 3)^2 = 6^2](https://img.qammunity.org/2019/formulas/mathematics/high-school/rroi2nk6xk01skzu91v8u3f4us593fno4g.png)