72.3k views
1 vote
Determine whether the function f(x) -1 / x^2 + x^4 is even odd or neither

User MartinJ
by
8.1k points

1 Answer

2 votes

If f(-x) = f(x) then the function is even.

If f(-x) = -f(x) then the function is odd.

We have:
f(x)=(-1)/(x^2+x^4)

calculate f(-x):


f(-x)=(-1)/((-x)^2+(-x)^4)=(-1)/((-1x)^2+(-1x)^4)\\\\=(-1)/((-1)^2x^2+(-1)^4x^4)=(-1)/(1x^2+1x^4)=(-1)/(x^2+x^4)=f(x)

f(-x) = f(x), therefore your answer: The function f(x) is even.

If we have:
f(x)=(-1)/(x^2)+x^4


f(-x)=(-1)/((-x)^2)+(-x)^4=(-1)/(x^2)+x^4

f(-x) = f(x)

f(x) is even

User Paul Bastian
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories