114k views
5 votes
C, E and D points divide AB segment by ratio 1:2, 1:3, 1:4 (from point A).

What is the ratio of point E to DC?

please answer with step by step explanation​

1 Answer

9 votes

Answer:


3:5

Explanation:


We\ are\ given\ that:\\AB\ is\ a\ Line\ Segment\ that\ has\ Points\ A\ and\ B,\ that\ are\ it's\ two\ End-Points.\\Now,\\Point\ C\ is\ marked\ on\ AB\ that\ divides\ AB\ into\ AC\ and\ CB,\ whose\\ lengths\ are\ in\ a\ Ratio\ 1:2.\\\\Point\ E\ is\ marked\ on\ AB\ that\ divides\ AB\ into\ AE\ and\ EB,\ whose\\ lengths\ are\ in\ a\ Ratio\ 1:3.\\\\Point\ D\ is\ marked\ on\ AB\ that\ divides\ AB\ into\ AD\ and\ DB,\ whose\\ lengths\ are\ in\ a\ Ratio\ 1:4.\\\\


Now,\\For\ Point\ C,\\Total\ no.\ of\ parts=1+2=3\\Length\ of\ AC=(1)/(3)x\\Length\ of\ CB=(2)/(3)x\\\\For\ Point\ E,\\Total\ no.\ of\ parts=1+3=4\\Length\ of\ AE=(1)/(4)x\\Length\ of\ EB=(3)/(4)x\\\\For\ Point\ D,\\Total\ no.\ of\ parts=1+4=5\\Length\ of\ AD=(1)/(5)x\\Length\ of\ DB=(4)/(5)x\\


Now,\\Lets\ move\ onto\ some\ REAL\ calculations!!\\We\ firstly\ observe\ that,\\AD+DC=AC\\Hence,\\(1)/(5)x+DC=(1)/(3)x\\DC=(1)/(3)x-(1)/(5)x\\DC=(5-3)/(15)=(2)/(15)


We\ secondly\ observe\ that,\\AD+DE=AE\\Hence,\\(1)/(5)x+DE=(1)/(4)x\\DE=(1)/(4)x-(1)/(5)x\\DE=(5-4)/(20)=(1)/(20)


Now,\\We\ know\ that,\\DE+EC=DC\\Hence,\\(1)/(20)x+EC=(2)/(15)x \\EC=(2)/(15)x-(1)/(20)x\\EC=(40-15)/(300)x\\EC=(25)/(300)x=(1)/(12)x\\\\By\ comparing\ DE\ and\ EC,\\Length\ of\ DE=(1)/(20)x\\Length\ of\ EC=(1)/(12)x\\The\ ratio\ of\ Lengths\ of\ DE\ to\ Length\ of\ EC=(1)/(20)x:(1)/(12)x\\We\ know\ that,\\Ratio's\ are\ merely\ fractions\ represented\ by\ ':'.\\Hence,\\(1)/(20)x:(1)/(12)x\\=((1)/(20)x)/((1)/(12)x)\\


=(1)/(20)*12\\=(12)/(20)=(3)/(5)=3:5

User Kksensei
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories