Greetings!
To start this problem, let's first assign a variable for the missing, consecutive odd numbers. Since they are consecutive and odd, we add two.
Proof: 3-1=2, 5-3=2
The first, consecutive, odd number:
![x](https://img.qammunity.org/2019/formulas/mathematics/college/lhtxftojjkzsmo3o2h4ilq8naohracejui.png)
The second, consecutive, odd number:
![x+2](https://img.qammunity.org/2019/formulas/mathematics/high-school/uzum90zawk5l4m45ejmc2t0hhkz9al3541.png)
The third, consecutive, odd number:
![x+4](https://img.qammunity.org/2019/formulas/mathematics/college/iwj2gs9hy6y6gx49bsxcmhndxk2wrz7dzi.png)
The fourth, consecutive, odd number:
![x+6](https://img.qammunity.org/2019/formulas/mathematics/middle-school/zvgaog9sc4phrdarty95cbwpokblxo00ys.png)
The sum of the values are equal to 3 times the sum of the first two numbers, of which this is equal to 35 less than the fourth number. Let's create an equation to simplify this:
![3((x)+(x+2))=(x+6)-35](https://img.qammunity.org/2019/formulas/mathematics/middle-school/rde08zi6jhmmtnj1fdexs9kktvff4vxgis.png)
Complete the operations inside the parenthesis:
![3(2x+2)=(x+6)-35](https://img.qammunity.org/2019/formulas/mathematics/middle-school/yx6381jrsg6g6tiivdp6wj9w8dvugmibzd.png)
Distribute the parenthesis (utilizing the distributive property)
![(((2x)(3))+((2)(3)))=(x+6)-35](https://img.qammunity.org/2019/formulas/mathematics/middle-school/f7g5fp1ujuint8ktnaab7fgaowntpzheno.png)
![(6x+6)=(x+6)-35](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fguw2xjp203hblevxctphoyiv448ji09xg.png)
Simplify both sides:
![6x+6=x-29](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2t44ymhg2otvlcsmxwwbgtmgsu4yjjg5ut.png)
Add -6 and -x to both sides of the equation:
![(6x+6)+(-6)+(-x)=(x-29)+(-6)+(-x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/s1ysn2nktjm9glv3v09lozy34skf0yj6bl.png)
![5x=-35](https://img.qammunity.org/2019/formulas/mathematics/middle-school/13ptubyas8abi6yuq0yqtigu0z0y6y722w.png)
Divide both sides of the equation by 5:
![(5x)/(5)=(-35)/(5)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wlmhvk650acy9koultq6zpfb3o70et4gqa.png)
![x=-7](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gah7jbzapabclh3hbypv4zu4w4ehc4qd5o.png)
If
is equal to -7:
![x+2=-5](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ty5orjbjed8622a7hmd5rq9iz64acrrmir.png)
![x+4=-3](https://img.qammunity.org/2019/formulas/mathematics/middle-school/68xgq212trv9z9ievbc45ebji9ft2z0r3c.png)
![x+6=-1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/fncjnjkcjfcf7twlof0udv3k1ssl7n4p0a.png)
The four numbers are:
![\boxed{-7,-5,-3,-1}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/u92qs6szyy8wblr6dx04i7lwaa498fwfij.png)
I hope this helps!
-Benjamin