103k views
2 votes
If (ax+2)(bx+7) = 15x^2 + cx +14 for all values of x, and a+b =8, what are two possible values of C ?

A. 3 and 5
B. 10 and 21
C. 31 and 41
D. 6 and 35

2 Answers

3 votes


(ax+2)(bx+7)=abx^2+(7a+2b)x+14=15x^2+cx+14

For the two quadratics to match, the coefficients of corresponding terms must be equal, so that


\begin{cases}ab=15\\7a+2b=c\end{cases}

From the given options, we are only allowing
c to be an integer, which means
a,b must also be integers. Then we have eight possible choices for
a,b:

1, 15

3, 5

5, 3

15, 1

plus the same combinations with negative signs on both numbers. But since the choices for
c are also positive, we can ignore the negative versions.

If
(a,b)=(1,15), then
7a+2b=37.

If
(a,b)=(3,5), then
7a+2b=31.

If
(a,b)=(5,3), then
7a+2b=41.

If
(a,b)=(15,1), then
7a+2b=107.

So the answer is C.

User Nikolay Mamaev
by
5.1k points
3 votes

The two possible values of
C is option
C
(31 and
41).

Given,


(ax+2)(bx+7)=15x^2+cx+14\\a+b=8

Simplify the equation of LHS as,


(ax+2)(bx+7)=abx^2+2bx+7ax+14\\=abx^2+x(7a+2b)+14

Compare LHS and RHS as,


abx^2+x(7a+2b)+14=15x^2+cx+14\\abx^2+(7a+2b)x=15x^2+cx

The two equations are:


ab=15\\7a+2b=c

From the given,


a+b=8

Subtract
b on both sides in the equation as,


a+b-b=8-b\\a=8-b

Substitute
a=8-b in the equation
ab=15 as,


(8-b)b=15\\8b-b^2=15\\-b^2+8b=15\\

Solve the equation by setting equal to zero as,


-b^2+8b-15=0\\b^2-8b+15=0

Factorize the equation as follows:


b^2--8b+15=0\\b^2-5b-3b+15=0\\b(b-5)-3(b-5)=0\\(b-3)(b-5)=0

Solve the factors as,


b-3=0\\b=3

And


b-5=0\\b=5

Substitute
b=3 in
a=8-b as,


a=8-3\\=5

Thus,
a=5,b=3.

Substitute
b=5 in
a=8-b as,


a=8-5\\=3

Thus,
a=3,b=5.

Substitute
a=3,b=5 in the equation
7a+2b=c as,


7(3)+2(5)=c\\21+10=c\\c=31

Substitute
a=5,b=3 in the equation
7a+2b=c as,


7(5)+2(3)=c\\35+6=c\\c=41

Thus, the two possible values of
C is
31 and
41.

User Maksym Gontar
by
5.3k points