The two possible values of
is option
and
.
Given,
![(ax+2)(bx+7)=15x^2+cx+14\\a+b=8](https://img.qammunity.org/2019/formulas/mathematics/high-school/v8d5roz6oqdtajx9i5r4o0x8avlkse4ytf.png)
Simplify the equation of LHS as,
![(ax+2)(bx+7)=abx^2+2bx+7ax+14\\=abx^2+x(7a+2b)+14](https://img.qammunity.org/2019/formulas/mathematics/high-school/d4ocbgwvleco2m3f7hy938ur4pm6iei31z.png)
Compare LHS and RHS as,
![abx^2+x(7a+2b)+14=15x^2+cx+14\\abx^2+(7a+2b)x=15x^2+cx](https://img.qammunity.org/2019/formulas/mathematics/high-school/onl9l63itmrsp1kfc3oe6jvaa9f0zu9d5s.png)
The two equations are:
![ab=15\\7a+2b=c](https://img.qammunity.org/2019/formulas/mathematics/high-school/kdkhymskiuxd6ti0qbcr2w3v8zso1vm3ul.png)
From the given,
![a+b=8](https://img.qammunity.org/2019/formulas/mathematics/high-school/1xidi5j3pw7v6qcnzd4zhmukzzk2ea9tgn.png)
Subtract
on both sides in the equation as,
![a+b-b=8-b\\a=8-b](https://img.qammunity.org/2019/formulas/mathematics/high-school/mh0a746e4k7fn6401rro4na37ao8p93h2p.png)
Substitute
in the equation
as,
![(8-b)b=15\\8b-b^2=15\\-b^2+8b=15\\](https://img.qammunity.org/2019/formulas/mathematics/high-school/goo9kj0wd5uttq1kct4n6rrki4vrrgzy71.png)
Solve the equation by setting equal to zero as,
![-b^2+8b-15=0\\b^2-8b+15=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/qh2m9rmljlnj7gydrhq3c6701v8t0k9jii.png)
Factorize the equation as follows:
![b^2--8b+15=0\\b^2-5b-3b+15=0\\b(b-5)-3(b-5)=0\\(b-3)(b-5)=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/yn8syigrflm2b7yoq1v1nbcai4s8yu8f8o.png)
Solve the factors as,
![b-3=0\\b=3](https://img.qammunity.org/2019/formulas/mathematics/high-school/mv6oyitbq2ikvzmql68ktrslihplhabh1m.png)
And
![b-5=0\\b=5](https://img.qammunity.org/2019/formulas/mathematics/high-school/if6nuejgp120k9u8nyahdx28vic2ns3avp.png)
Substitute
in
as,
![a=8-3\\=5](https://img.qammunity.org/2019/formulas/mathematics/high-school/ohd5zkqsmj2frwihwzpon37g2aosntli6y.png)
Thus,
.
Substitute
in
as,
![a=8-5\\=3](https://img.qammunity.org/2019/formulas/mathematics/high-school/ulblg5ocs5n40wk8htblmwp7a8ii9i59db.png)
Thus,
.
Substitute
in the equation
as,
![7(3)+2(5)=c\\21+10=c\\c=31](https://img.qammunity.org/2019/formulas/mathematics/high-school/4kt5bzunk4ydfdsgedh9kqyf8ljavezw1r.png)
Substitute
in the equation
as,
![7(5)+2(3)=c\\35+6=c\\c=41](https://img.qammunity.org/2019/formulas/mathematics/high-school/wu3swszj3mkgpt97ajn99tazr7syfxxmdk.png)
Thus, the two possible values of
is
and
.