The
confidence interval for proportion is
![p \pm z_(\alpha /2) \sqrt{(p(1-p))/(n)}](https://img.qammunity.org/2019/formulas/mathematics/college/zw7rm16riaih0rtni8u6c7scov46wzbz2y.png)
Here
![p=(55)/(100)=0.55,\alpha =0.01](https://img.qammunity.org/2019/formulas/mathematics/college/3ki7es8hoa3j5j3vnew96ia913u2zm169h.png)
Using standard normal tables
.
The 99% confidence interval for proportion is
![0.55 \pm 2.576\sqrt{(0.55(1-0.55))/(100)}](https://img.qammunity.org/2019/formulas/mathematics/college/lysxyu1c7p7i61wclpb4y6pjwya9dwbbrt.png)
![(0.422,0.678)](https://img.qammunity.org/2019/formulas/mathematics/college/yakrl6l8o6qdb1m96gy2v9498w0jehjwz8.png)
The CI interpretation is that "We are 99% confident that the proportion of voters in favor of the candidate lies between 0.422 and 0.678".